Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
State machine replication (SMR) is a core mechanism for building highly available and consistent systems. In this paper, we propose Waverunner, a new approach to accelerate SMR using FPGA-based SmartNICs. Our approach does not implement the entire SMR system in hardware; instead, it is a hybrid software/hardware system. We make the observation that, despite the complexity of SMR, the most common routine—the data replication—is actually simple. The complex parts (leader election, failure recovery, etc.) are rarely used in modern datacenters where failures are only occasional. These complex routines are not performance critical; their software implementations are fast enough and do not need acceleration. Therefore, our system uses FPGA assistance to accelerate data replication, and leaves the rest to the traditional software implementation of SMR. Our Waverunner approach is beneficial in both the common and the rare case situations. In the common case, the system runs at the speed of the network, with a 99th percentile latency of 1.8 µs achieved without batching on minimum-size packets at network line rate (85.5 Gbps in our evaluation). In rare cases, to handle uncommon situations such as leader failure and failure recovery, the system uses traditional software to guarantee correctness, which is much easier to develop and maintain than hardware-based implementations. Overall, our experience confirms Waverunner as an effective and practical solution for hardware accelerated SMR—achieving most of the benefits of hardware acceleration with minimum added complexity and implementation effort.more » « less
-
The need for high-performance and low-power acceleration technologies in servers is driving the adoption of PCIe-connected FPGAs in datacenter environments. However, the co-development of the application software, driver, and hardware HDL for server FPGA platforms remains one of the fundamental challenges standing in the way of wide-scale adoption. The FPGA accelerator development process is plagued by a lack of comprehensive full-system simulation tools, unacceptably slow debug iteration times, and limited visibility into the software and hardware at the time of failure. In this work, we develop a framework that pairs a virtual machine and an HDL simulator to enable full-system co-simulation of a server system with a PCIe-connected FPGA. Our framework enables rapid development and debugging of unmodified application software, operating system, device drivers, and hardware design. Once debugged, neither the software nor the hardware requires any changes before being deployed in a production environment. In our case studies, we find that the co-simulation framework greatly improves debug iteration time while providing invaluable visibility into both the software and hardware components.more » « less
An official website of the United States government

Full Text Available